	 	·	 	,	_	 	
USN							10AU56
	9						

Fifth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Automotive Fuels and Combustion

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. What is meant by renewable energy sources? Explain in brief these energy sources with special references to Indian context. (10 Marks)
 - b. Write short notes on: i) Wind energy ii) Fuel cells. (10 Marks)
- 2 a. Give the General formula of the following fuels:
 - i) Paraffin ii) Olefins iii) Naphthene iv) Aromatic. Also state their molecular arrangements and mention whether they are saturated of unsaturated. (10 Marks)
 - b. Can alcohol be used for CI engines? Explain. (05 Marks)
 - c. What are the advantages and disadvantages of using natural gas as alternate fuels?

(05 Marks)

- a. Is the air fuel ratio expressed on a mole basis identical to the air fuel ratio expressed in a mass basis? Brief. (05 Marks)
 - b. How does the presence of moisture in air affect the outcome of a combustion process?

(05 Marks)

- c. One Kmol of Octane (C₈ H₁₈) is burned with air that contains 20 Kmol of O₂. Assuming the products contains only CO₂, H₂O, O₂ and N₂, determine the mole number of each gas in the products and the air fuel ratio for this combustion process. (10 Marks)
- 4 A test on a single cylinder, four-stroke oil engine having a bore of 15cm and stroke 30cm gave the following results: Speed 300rpm; Brake torque 200Nm; Indicated mean effective pressure 7 bar; Fuel consumption 2.4 kg/h; Cooling water flow 5kg/min; Cooling water temperature rise 35°C; Air fuel ratio 22; Exhaust gas temperature 410°C Barometer pressure 1 bar; Room temperature 20°C. The fuel has a calorific value of 42 MJ/kg and contains 15% by weight of hydrogen. Take latent heat of vaporization as 2250 KJ/kg. Determine
 - i. The indicated thermal efficiency.
 - ii. The volumetric efficiency based on atmospheric conditions.
 - iii. Draw up a heat balance in term of KJ/min. Take C_p for dry exhaust gas = 1KJ/kg K and Super heated steam $C_p = 2.1$ KJ/kg K; R = 0.287 KJ/kg K. (20 Marks)

PART - B

- 5 a. Briefly explain the following:
 - i) Time loss factor ii) Heat loss factor iii) Exhaust blow down factor. (10 Marks)
 - b. What will be the effect on efficiency of an Otto cycle having a compression ratio of 8, if C_V increases by 1.6%? (10 Marks)

10AU56

6	a.	Briefly explain the stages of combustion in SI engines elaborating t	he flame from
		propagation	(10 Marks)
	b.	Explain the effect of various engine variables on SI engine knock.	(10 Marks)
7	a.		(10 Marks)
	b.	Explain with figures the various types of combustion chambers used in CI er	igines.
			(10 Marks)
8	a.	With a neat sketch, explain the working principle of dual fuel engine.	(10 Marks)
	b.	Explain the modifications of fuel systems in multi fuel engines.	(10 Marks)
